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Abstract. This paper explores a method for creating 3D models of video artwork 
based on a fluid phenomenon called the Sound of Ikebana. We use multiple gen-
erative adversarial networks (GANs) to reconstruct and predict the shape of the 
fluid artworks from two-dimensional reference photos. This is an extension of 
our previous efforts with WassersteinGAN enhancements to predict the shape of 
the unmapped part and correct the texture. The results show that we can apply 
several deep-learning techniques to create 3D art without 3D training data. 
Keywords: fluid art, Sound of Ikebana, 3D modeling, differentiable rendering 
network, WassersteinGAN, CycleGAN 

1 Introduction 

Recent advances in 3D technology have taken 3D entertainment to a new level. They 
have also created a new demand for 3D artwork. This paper addresses the issue of cre-
ating a 3D model from 2D reference photos of fluid art.  
     One of the authors of this paper, Naoko Tosa, has developed an original idea based 
on fluid phenomena titled "Sound of Ikebana [1]" The Sound of Ikebana is created by 
capturing Ikebana-like shapes of fluid flow with a high-speed camera that takes 2000 
frames per second. By controlling the liquid's material and sound, she sought to express 
numerous color variations and cultural stories. Although the artwork is based on natural 
phenomena, people feel the Japanese beauty in the artwork. The artwork is considered 
one of her most famous artworks.     
     Sound of Ikebana is a collection of 2D videos and photos. We seek a method to 
provide the 3D model of the Sound of Ikebana so that people can enjoy the full view of 
the fluid artwork. However, because the physical limitations in the recording method 
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result from the fast-moving and short-lived properties of the flow, the artist cannot scan 
the entire 3D scene of the Sound of Ikebana in high quality. Therefore, creating the 3D 
Sound of Ikebana requires advanced techniques to overcome this limitation. 
     Our approach uses deep learning models to predict the back and side view of the 2D 
Sound of Ikebana artwork and build a 3D model based on the predicted information. 
The pioneering work on this approach is GANverse3D [2], a 3D variant of Generative 
Adversarial Networks (GANs) [3]. GANverse3D consists of two networks: StyleGAN 
[4] and an inverse graphics neural network. Style-GAN creates a training dataset based 
on photos of the main object (vehicles, birds, horses, etc.) taken from different angles 
of an input image; and an inverse graphics neural network that deforms a sphere into a 
predicted 3D model of the input images from the 2D datasets generated by StyleGAN. 

The lack of pre-trained 3D information and training data with multiple views of the 
Sound Ikebana requires us to combine this idea with previous research. The authors in 
[5] obtained point cloud data of the front view of the Sound of Ikebana via the Phase 
Only Correlation method [6][7]. In this work, we use this point cloud data as a reference 
shape and combine it with several variations of GANs to reconstruct the front view, 
predict the multi-view of the Sound of Ikebana artworks, and generate their 3D model. 

This article is organized as follows: Section 2 introduces the Sound of Ikebana, Sec-
tion 3 details our improvement in creating the 3D Sound of Ikebana, and Section 4 
discusses the results obtained. 

2 Sound of Ikebana 

As the introduction mentions, the Sound of Ikebana is a typical example of fluid arts. 
Interestingly, fluid flows have some connection to art. Fluid flows are natural and flex-
ible, and they could represent beautiful forms such as the "milk crown," therefore, it 
helps artists to create various kinds of shapes. Moreover, the uncertainty of the fluid 
dynamics gives an artist the enjoyment of unexpected phenomenon that appears in their 
artworks.  

Naoko Tosa uses sound vibration to create fluid flows to create the Sound of Ikebana. 
The whole system mainly consists of a speaker with corn on top. Then, thin rubber is 
put on it, and viscous fluid such as color paint is put on the rubber. Then, the sound 
vibrates the corn, and the liquid jumps up, creating various forms. A 2000 fps high-
speed camera captures the jumping-up liquid phenomenon. The whole system is illus-
trated in Fig. 1. 
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Fig. 1. The system of Sound of Ikebana [1] 

Fig. 2 shows several typical scenes of the Sound of Ikebana. The artist controls the 
creation process by changing the sound feature, sound volume, and material of raw 
paint to create various fluid forms. In addition, the fluid flow's flexibility and uncer-
tainty help the artist create various beautiful forms. The artwork is considered an ex-
pression of Japanese art philosophy as one might use various color materials to repre-
sent Japanese seasonal flowers and the "Wabi-Sabi" (a Japanese sense of beauty mean-
ing "beauty within simplicity") aesthetics. For example, Fig. 3 shows the similarity be-
tween the Sound of Ikebana and the basic form of Ikebana, which is an asymmetrical 
triangle connecting vertices of different heights: "core," "sub," and "body." 

 
Fig. 2. Some examples of the Sound of Ikebana  
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Fig. 3. Left: The basic form of Ikebana. Right: A Sound of Ikebana shape. 

How to extract beauty from natural phenomena has been one big topic in Japanese art. 
Some Japanese artists found beauty in rivers and scattered waves and have created fa-
mous artworks based on them. Traditional Ikebana artists probably tried to represent 
nature minimally and found the asymmetric triangle as the primary form of nature. In 
the modern scene of Japanese art, with the help of high technology, Tosa has found that 
the primary form of nature is the same asymmetric triangle. That is why Naoko Tosa 
named the artwork “Sound of Ikebana.” 
     The fluid flow produced by the sound vibration lasts for a very short time, so the 
artist had to use a high-speed camera. Two thousand frames per second camera was 
used to capture the flow so that it could be reproduced at speed 67 times slower than 
actual time. Since the footage was captured with 2000 frames per second camera, it is 
not easy to capture the 3D information of the Sound of Ikebana with today's technology. 
Therefore, we need to apply some 3D reconstruction techniques from two-dimensional 
photos. The procedure is described in the following section. 

3 Generation of 3D Sound of Ikebana 

3.1 Point cloud estimation by Phase-Only Correlation Method 

The first attempt to create 3D models of the Sound of Ikebana [5] is to estimate the 
point cloud using the Phase-Only Correlation (POC) method [6][7], which Toppan 
Printing Inc has commercialized. The concept is to use multiple high-speed cameras 
around the front view of the ink materials and capture different frames of the fluid flow 
from different angles (Fig. 4). Then, the photo frames are used to estimate the point 
cloud using POC. 
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Fig. 4. Multi-camera setting to apply the POC method [5] 

In [5], the authors used Poisson reconstruction to generate a 3D mesh from the point 
cloud obtained by POC. These meshes only reproduced the front 3D shape of the Sound 
of Ikebana due to the camera setting shown in Fig. 4. Therefore, they were not ready 
for 3D printing and required further manual processing to clean up the mesh (see ex-
amples in Fig. 5). Therefore, an enhancement to approximate the 3D mesh from point 
clouds of the front side of the Sound of Ikebana is essential. 

 
Fig. 5. Some examples of 3D reconstruction by combining the POC method and Poisson 

reconstruction [5]. 

To sharpen the shape of the reconstructed meshes from the point cloud, one can replace 
the Poisson reconstruction step with the AlphaShape algorithm [8]. An example can be 
found in Fig. 6, where the shape is very close to the original Sound of Ikebana. There-
fore, we decided to create the 3D Sound of Ikebana based on the front-view surface 
meshes obtained by AlphaShape. POC performs well when the camera is set in a narrow 
baseline. In this case, we could obtain good 3D mesh only for the front view of the 
point cloud. Therefore, we must improve the texture and predict the shape other than 
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the front view. This improvement is performed using multiple GANs, as described in 
the next section. 

 

 
Fig. 6. A surface mesh obtained by AlphaShape captured by Meshlab. 

3.2 Generative Adversarial Networks (GANs) 

In recent years, GANs (generative adversarial networks) have become an essential topic 
in deep learning. The "generative" function of GANs generates new data based on a 
known data set. A basic GANs network is a combination of two networks: A generator 
G and a discriminator D (Fig. 7). In the training of GANs, G tries to generate new data 
that resembles a target distribution as much as possible. In contrast, D tries to detect 
whether a data sample is "real" or "fake" as precisely as possible. After this game 
reaches equilibrium, one might use G to generate new data from random noise or spe-
cific input data. 

 

Fig. 7. The primary configuration of GAN ([3]) 
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Fig. 8. Basic configuration of CycleGAN ([10]) 

One advantage of GANs is that the training process does not require extensive training 
data. Many GAN variants have been developed by modifying the basic idea of the min-
imax game of generators and discriminators to work with different problems. Wasser-
stein GANs [9] (WGAN) is one of the most used variations of GANs that uses Wasser-
stein distance in the loss function instead of cross-entropy in the original GANs. 
WGAN helps the network avoid mode collapse problems when training GANs. 
     CycleGAN [10], utilized in style transfer tasks, is another well-known GANs vari-
ant. Fig. 8 depicts the architecture of CycleGAN, which mutually transforms items be-
tween two datasets by an optimized minimax game between generators and discrimi-
nators, as well as the cycle-consistency loss, the difference between an input image and 
the reconstructed image created by combining two generators. For 3D data, there are 
several GANs variations (see [11] for example). However, the absence of 3D training 
data for the Sound of Ikebana makes us consider an approach based on 2D-to-3D GANs 
variation. We note a pioneer work on this topic - GANverse3D [2]. The concept of this 
work is to use StyleGAN to generate different two-dimensional photos of an input ob-
ject from different angles. Then, the system will use these photos as reference infor-
mation to deform a sphere (via the DIB-R network [12] in the NVIDIA Kaolin library 
[13]) to obtain an approximated mesh such that the projected images of this mesh are 
close to the photo generated by StyleGAN. Since the Sound of Ikebana is difficult to 
reproduce, we needed to obtain more 2D data from different angles to train StyleGAN. 
Therefore, we used a combined method that includes the DIB -R network, WGAN, and 
CycleGAN. The detailed procedure is described in the next section. 

3.3 Proposed 3D modeling process 

Our proposed 3D modeling process for the Sound of Ikebana includes three phases (see 
Fig. 9). The first phase is to approximate the point cloud information of the front view.  
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Fig. 9. Proposed 3D modeling process 

of the artwork. The second phase involves deforming a sphere into a mesh such that its 
front view is close to the point cloud of the first phase via the DIB-R network and 
CycleGAN. The last phase predicts the texture and shape of the unmapped part of the 
artwork via the DIB-R network and WGAN. 

In our recent research [15], the proposed process only included two phases: the first 
and the second. In this article, we added the last phase so that a more precise prediction 
for the side and back view of the Sound of Ikebana would be made and a more precise 
prediction of their textures.  

 
First phase 
We first utilize the POC method to create the point cloud for the Sound of Ikebana. 
Next, we recreate a surface mesh representing the front view of the original artwork 
using the AlphaShape algorithm. 
Second phase 
In the second phase, the front view reconstruction phase (see Fig. 10), we use the Nvidia 
Kaolin application to generate n 2D projected images of the approximated surface mesh 
from n angles ranging from 0 to 180 degrees in azimuth (the front view) and 0 in ele-
vation. In our experiment, we set n = 100. The information about the masks and angles 
is also stored. Next, we use CycleGAN to transform projected images into the Sound 
of Ikebana stylized projected images. Then we deform a sphere (as initial mesh) via the 
DIB -R network by optimizing the following loss function. 
 

L = λimLim +  λIOULIOU  + λlapLlap + λflatLflat 
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Fig. 10. The front-view reconstruction phase 

Here, Lim is the standard image reconstruction loss defined by comparing Ikebana 
stylized projected images and the projected image of the mesh of the current training 
stage. LIOU is the intersection-over-union between the ground-truth mask and the 
rendered mask of the current mesh. Llap and Lflat are standard smooth regularization 
losses (see [11] for a detailed definition).  λim, λIOU, λlap, λflat are hyperparameters for 
tuning. 
 
Last phase 
The shape and texture of the uncaptured part of the mesh are predicted using WGAN 
and DIB-R networks in the final phase. We use Nvidia Kaolin Application to generate 
randomly numerous viewpoints information (0 in elevation and varies in azimuth). At 
each training epoch, we obtain projected images of the mesh respected to the angles 
and update the DIB-R network to continue deforming the mesh in the second phase 
based on WGAN, where the training data is the frame images captured by multiple 
cameras. This phase tries to make the projected images look similar to the frame images 
via WGAN. Here, the DIB-R network plays the role of the generator G in GANs 
structure, and it generates a new Sound of Ikebana by taking projection images around 
the mesh concerning the reference angles. 

3.4 Results 

We obtained the 3D model of some forms of the Sound of Ikebana (as shown in Fig. 
12) from the original Sound of Ikebana (as shown in Fig. 11) by following the process 
described in section 3.3. This shows that our method successfully reconstructs the front 
view and predicts the uncaptured part of the original Sound of Ikebana by referencing 
the point clouds obtained by POC. These meshes are ready to be printed without 
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additional manual editing. The back-view and side-view are freely transformed but still 
in harmony with the front view by the transformation based on WGAN. 
    In our previous attempt [15], we used only phase 1 and phase 2 in the process and 
reconstructed the mesh based on the point cloud by generating projected images from 
0 to 360 degrees (including front, side, and back views). The proposed method can 
predict the shape of the uncaptured part by comparing it with the shadow of the front 
view. In this paper, we perform a free transform of the back-view and side-view by 
adding WGAN to ensure the projected images are in the same style as the Sound of 
Ikebana by WGAN. This method helped the final mesh look more natural than the 
previous work, as the mesh would be asymmetric. The texture is also corrected one 
more time by WGAN. 

 

 
Fig. 11. The original 2D Sound of Ikebana used in the experiment 

 

 
 

Fig. 12. Examples of the obtained 3D Sound of Ikebana in our experiment. The left column: the 
front view. Other columns: several images from different angles. Image captured by the 

NVIDIA Kaolin Application. 
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As the DIB-R network is a topological invariant, the 3D Sound of Ikebana has a similar 
topology to the sphere. The initial mesh should be simple once the sphere is chosen as 
an initial shape. Otherwise, the deformation might be aggressive or collapse. The tex-
ture is well transformed, but we expect to generate a smoother texture representing fluid 
phenomena. Our next experiment will improve the texture quality and expand the work 
to the Sound of Ikebana with a more complex topology.   

4 Conclusion 

In this work, we extended the previous efforts in [5] and [15] to build a 3D model of 
the Sound of Ikebana, a typical example of Fluid Art. The method combines the Phase-
Only Correlation method and other deep learning networks such as DIB -R, CycleGAN, 
and WGAN. Experimental results show that we were able to use multiple deep-learning 
networks to generate the full 3D Sound of Ikebana without pre-training 3D data. The 
capability of WGAN helped to improve the prediction of the side view and the back 
view of the mesh, which is not captured by the high-speed cameras in the creation pro-
cess of the Sound of Ikebana. 
    We plan to improve our method for future work to perform a better texture transfor-
mation and create a 3D model of the Sound of Ikebana with complex shapes. Moreover, 
we expect to generate not only the 3D still model of the Sound of Ikebana but also the 
3D videos that represent the moving of color fluid flow in the making of the Sound of 
Ikebana. The 3D modeling of fluid arts could be applied to various fields of art exhibi-
tion, architecture and fashion design, metaverse, etc. Deep Learning would be a pow-
erful tool for artists to create art and industrial design. 
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